RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY-JUNE 2013

FIRST YEAR

Date : 24/05/2013 Time : 11am – 2pm **Mathematics** (General)

Paper : II

Full Marks : 75

[Use separate answer books for each group]

Group-A

A		2
Answ	/er any three questions:	3x5=15
1.	Find the nature of the following equation and reduce it to it's canonical form: $8x^2 - 12xy + 17y^2 - 4x - 22y + 13 = 0$	5
2.	a) The co-ordinate axes are rotated through an angle of $\frac{\pi}{3}$. If the transformed co-ordinates	of
	a point are $\left(2\sqrt{3},-6 ight)$, find it's original co-ordinates.	1
3.	 b) If the polar of a point (α,β) with respect to the parabola y² = 4ax touches the parabola x² = 4by then show that the locus of the point (α,β) is xy + 2ab = 0. If the straight lines joining the origin to the points of intersection of the cure 3x² - xy + 3y² + 2x - 3y + 4 = 0 and -2x + 3y + k = 0 be at right angles then show the 	ola 4 ve
Л	$6k^2 + 5k + 52 = 0.$	5 5
4.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	5
5.	PSP^{\prime} is a focal chord of a conic. Prove that the angle between the tangents at p and p'	is
	$ an^{-1}\left(rac{2e\sinlpha}{1-e^2} ight)$, where $lpha$ is the angle between the chord and the major axis.	5
	<u>Group-B</u>	
Answ	ver any three questions:	3x5=15
6. 7. a)	Prove that the medians of a triangle meet at a point which divides each median in the ration 2:1. Determine the values of λ and μ for which the vectors $\left(-3\vec{i}+4\vec{j}+\lambda\vec{k}\right)$ and $\left(\mu\vec{i}+8\vec{j}+6\vec{k}\right)$	5 are
	collinear.	2
b)	Show that the four points $\vec{\alpha} = 6\vec{a} - 4\vec{b} + 10\vec{c}$, $\vec{\beta} = -5\vec{a} + 3\vec{b} - 10\vec{c}$, $\vec{\gamma} = 4\vec{a} - 6\vec{b} - 10\vec{c}$, $\vec{\delta} = 2\vec{b} + 10\vec{c}$ coplanar.	care 3
8 2)	If $ \vec{\alpha} + \vec{\beta} = \vec{\alpha} - \vec{\beta} $ prove that $\vec{\alpha}$ is perpendicular to $\vec{\beta}$	2
b. a)	Show by vector method that the angle in a semi-circle is a right angle.	3
9.	Find the vector equation of the plane perpendicular to the vector $\vec{a} = 2\vec{i} + 3\vec{j} + 6\vec{k}$ and pass through the terminal point of the vector $\vec{b} = \vec{i} + 5\vec{j} + 3\vec{k}$.	sing 5
10.	Find by vector method the volume of the tetrahedron whose vertices are, A(2, -1, -3), B(4, 1, 3) C(3, 2, -1), D(1, 4, 2).	, 5
	<u>Group-C</u>	
Answ 11. a	ver <u>any five</u> questions:)Show that $\left\{\frac{3n+1}{n+2}\right\}$ is a bounded sequence.	5X5=25
b) Let, $S_n = \frac{n+1}{2n+1}$, verify whether $\{S_n\}$ is a monotone decreasing sequence?	3+2

1

12. a) If $\sum_{n=1}^{\infty} a_n$ be a convergent series of real numbers, prove that $a_n \to 0$ as $n \to \infty$.

- b) Test the convergence of the series: $1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7} + \cdots$ 2+3
- State and prove Lagrange's Mean Value Theorem 13. 1+414.a) Find the values of a and b such that $\lim_{x \to 0} \frac{ae^x + be^{-x} + 2\sin x}{\sin x + x\cos x} = 2$ 3
 - b) Find the extreme values of the function f in its domain, where $f(x) = \frac{\log x}{x}$. 2
- Find all the asymptotes of $x^3 2x^2y + xy^2 + x^2 xy + 2 = 0$. 15.
- Find the envelope of the family of ellipse $\frac{x^2}{a^2} + \frac{x^2}{b^2} = 1$, where the parameters a, b are connected by 16. a+b=k.

Use Maclaurin's infinite series to prove that for all real x, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ 17.

- 18. a) Show that (1,0) is a node of the curve $x^4 2y^3 3y^2 2x^2 + 1 = 0$.
 - Using Lagrange's method of undetermined multiplier, find the extreme values of f(x, y) = xyb) subject to the condition 5x + y = 13.

Group-D

Answer any one question: 1×2 19. a) Evaluate $\int \frac{dx}{4+5\cos x}$. 2 b) Find the value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x \cos x}{2 \sin^2 x + 5 \cos^2 x} dx.$ 2

Answer any two questions: 20.

- a) Evaluate $\int \frac{2\cos x + 3\sin x}{3\cos x + 2\sin x} dx$.
- b) Find reduction formula for $\int tan^n x \, dx$, n being a positive integer greater than 1. Hence find $\int \tan^4 x \, dx$.

c) Evaluate
$$\lim_{n \to \infty} \left[\frac{n+1}{n^2+1^2} + \frac{n+2}{n^2+2^2} + \dots + \frac{1}{n} \right].$$
 4

Group-E

21. Answer any one question:

a) Find the order and the degree of the differential equation $\frac{d^3y}{dx^3} + y = \sqrt{1 + \frac{dy}{dx}}$.	2
b) Construct a differential equation by the elimination of the constants a and b from $ax^2 + by^2 = 1$.	2
22. Answer any two questions:	2×4
a) Solve: $x^{2}dy + y(x+y)dx = 0$.	4
b) Solve: $(x^2y^3 + 2xy)dy = dx$.	4
c) Find the general and singular solution of $y = px + \sqrt{a^2p^2 + b^2}$, $p = \frac{d}{4\pi}$.	4

2×4

4

4

1×2

5

5

5

2

3